Crystal Chemical Studies of the $5 f$-Series of Elements. VIII. Crystal Structure Studies of Uranium Silicides and of $\mathrm{CeSi}_{2}, \mathrm{NpSi}_{2}$ and PuSi_{2}

By W. H. Zachariasen
Argonne National Laboratory and Department of Physics, University of Chicago, Illinois, U.S.A.

(Received 14 October 1948)
Crystal structures are deduced for the compounds $\alpha-\mathrm{USi}_{2}, \mathrm{NpSi}_{2}, \mathrm{PuSi}_{2}, \mathrm{CeSi}_{2}, \beta-\mathrm{USi}_{2}, \mathrm{USi}, \mathrm{U}_{3} \mathrm{Si}_{2}$ and $\mathrm{U}_{3} \mathrm{Si}$. Each silicon atom forms three covalent bonds with other silicon atoms in the disilicides, two such covalent bonds in USi , one in $\mathrm{U}_{3} \mathrm{Si}_{2}$ and none in $\mathrm{U}_{3} \mathrm{Si}$. The various crystal structures and observed interatomic distances are discussed in some detail.

Introduction

A. R. Kaufmann, B. D. Cullity and Gust Bitsianes have studied the uranium-silicon phase diagram. Their work was carried out within the Manhattan Project during the war, and the results of their investigation were available to the writer. Kaufmann, Cullity and Bitsianes described the crystal structure of USi_{3}, and reported the existence of a series of additional uranium silicides which were tentatively identified as USi_{2}, $\mathrm{U}_{2} \mathrm{Si}_{3}, \mathrm{USi}, \mathrm{U}_{5} \mathrm{Si}_{3}$ and $\mathrm{U}_{10} \mathrm{Si}_{3}$. However, no attempt was made to determine the crystal structures of these compounds.

Through the courtesy of Dr John R. Clark the writer was furnished with samples of these various uranium silicides. Single crystals could not be isolated, and all observations had accordingly to be made by means of the powdered crystal method. All X-ray diffraction patterns were taken with $\mathrm{Cu} K$ radiation filtered through nickel foil.

The crystal structure of $\mathrm{PuSi}_{2}, \alpha-\mathrm{USi}_{2}$, CeSi_{2} and NpSi_{2}

Of these four isostructural compounds, PuSi_{2} was the

- first to be investigated. Dr E. F. Westrum tried to reduce PuF_{3} with CaSi_{2} and asked the writer to examine the reaction product.

Table 1 shows the X-ray diffraction lines (up to $\sin ^{2} \theta=0 \cdot 40$) as obtained from Dr Westrum's preparation. As is demonstrated in the table the observations can be interpreted as due to a single phase. This phase is body-centered tetragonal, and the unit-cell dimensions are $a_{1}=3.97 \pm 0.01 \mathrm{kX} ., a_{3}=13.55 \pm 0.05 \mathrm{kX}$.

Reflections $H_{1} H_{2} H_{3}$ are absent if (1) H_{1} and H_{2} are both even and $H_{3}=4 n+2$; (2) H_{1} and H_{2} are both odd and $H_{3}=4 n$. These absences lead to the space group I4/amd- $D_{4 h}^{19}$ or to one of its subgroups. In order to explain the main features of the observed intensity distribution it became necessary to place four plutonium atoms in the unit cell and at positions ($0,0,0$), ($\left.\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, $\left(0, \frac{1}{2}, \frac{1}{4}\right),\left(\frac{1}{2}, 0, \frac{3}{4}\right)$.

Table 1. Diffraction data from powder photograph of PuSi_{2}

		Intensity	
$\sin ^{2} \theta$	$H_{1} H_{2} H_{3}$	Obs.	Calc.
0.0415	101	s^{*}	74
0.0518	004	w	36
0.0671	103	m	69
0.0892	112	s	124
$0 \cdot 1192$	105	$w m$	47
$0 \cdot 1528$	200	$w+$	34
0.1929	$211+116$	m	$19+18$
0.1945	107	w	22
$0 \cdot 2043$	$204+008$	w	$22+5$
0.2187	213	$w+$	25
$0 \cdot 2708$	215	m -	26
$0 \cdot 3022$	$220+109$	$w-$	$11+7$
$0 \cdot 3462$	217	$w+$	17
	301	Nil	4
0.3557	$224+208$	$w+$	$9+9$
$0 \cdot 3699$	303	$v w$	5
0.3913	312	$w+$	24
0.3983	1.1.10	$w-$	12

* $s=$ strong, $m=$ medium, $w=$ weak, $v w=$ very weak.

At this stage in the investigation it became clear that the plutonium compound under consideration was isomorphous with ThSi_{2}, the crystal structure of which had recently been described (Brauer \& Mitius, 1942). Accordingly, the unknown plutonium compound was identified as PuSi_{2}.

The uranium silicide phase tentatively identified as USi_{2} by Kaufmann, Cullity and Bitsianes was found to be isostructural with ThSi_{2} and PuSi_{2}. In a similar manner a cerium silicide preparation by Dr B. M. Abraham and a neptunium silicide preparation by Dr I. Sheft were identified as CeSi_{2} and NpSi_{2} respectively.

The unit-cell dimensions and the calculated densities for the isostructural series of disilicides are shown in Table 2. The crystal structure for the series is as follows:

Space group: I4/amd.
Atomic positions: $(0,0,0),\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)+$;
$4 X$ in $(0,0,0),\left(0, \frac{1}{2}, \frac{1}{4}\right)$;
8 Si in $(0,0, \pm z),\left(0, \frac{1}{2}, \frac{1}{4} \pm z\right)$, with $z=0 \cdot 417 \pm 0 \cdot 010$
for the whole series of compounds, in agreement with the result of Brauer \& Mitius.

Table 2. Unit-cell dimensions

XSi_{2}	$a_{1}(\mathrm{kX})$.	$a_{3}(\mathrm{kX})$.	$\rho\left(\mathrm{g} . \mathrm{cm} .^{-3}\right)$
USi_{2}	$3 \cdot 97 \pm 0 \cdot 03$	13.71 ± 0.08	8.98
NpSi_{2}	$3.96 \pm 0 \cdot 01$	13.67 ± 0.03	$9 \cdot 03$
PuSi_{2}	$3.97 \pm 0 \cdot 01$	13.55 ± 0.05	$9 \cdot 12$
CeSi_{2}	$4 \cdot 15 \pm 0.03$	13.87 ± 0.07	$5 \cdot 41$

The last column of Table 1 gives the intensities calculated on the basis of the structure given above. The intensity formula used throughout this article is

$$
I \propto|F|^{2} p \frac{1+\cos ^{2} 2 \theta}{\sin ^{2} \theta \cos \theta}
$$

where F is the structure factor and p the permutation factor.

Each metal atom is bonded to twelve silicon atoms, each silicon atom to six metal atoms and to three other silicon atoms. The $X-\mathrm{Si}$ and $\mathrm{Si}-\mathrm{Si}$ distances are given in Table 3.

Table 3. Interatomic distances

$X \mathrm{Si}_{2}$	$X-\mathrm{Si}(\mathrm{A})$.	$\mathrm{Si}-\mathrm{Si}(\mathrm{A})$.
$\mathrm{ThSi}_{2}{ }^{*}$	$3 \cdot 15$	$2 \cdot 39$
USi_{2}	$3 \cdot 03$	$2 \cdot 29$
NpSi_{2}	$3 \cdot 02$	$2 \cdot 28$
PuSi_{2}	$3 \cdot 02$	$2 \cdot 27$
CeSi_{2}	$3 \cdot 13$	$2 \cdot 36$
* Brauer \& Mitius (1942).		

As pointed out by Brauer \& Mitius the network formed by the silicon atoms is the most interesting feature of the ThSi_{2} type of structure. The silicon atoms are bonded together to form a three-dimensional network with the metal atoms in the interstices.

The crystal structure of $\beta-\mathrm{USi}_{2}$

The X-ray diffraction data for the phase supposed to be $\mathrm{U}_{2} \mathrm{Si}_{3}$ are shown in Table 4. The observations correspond to a hexagonal unit cell with

$$
a_{1}=3.85 \pm 0.01 \mathrm{kX} ., \quad a_{3}=4.06 \pm 0.01 \mathrm{kX}
$$

The intensities show that there is only one uranium per unit cell. Accordingly the suggested formula $\mathrm{U}_{2} \mathrm{Si}_{3}$ must be rejected.

The volume of the unit cell is $52.3\left(\mathrm{kX}\right.$. ${ }^{3}$. In the $\alpha-\mathrm{USi}_{2}$ structure the volume per stoichiometric molecule is $54.0(\mathrm{kX} .)^{3}$. One is accordingly led to the conclusion that the hexagonal phase is a second form of USi_{2}.

The calculated density for one molecule per unit cell is $\rho=9.25 \mathrm{~g} . \mathrm{cm} .^{-3}$ for $\beta-\mathrm{USi}_{2}$, while the value

$$
\rho=8.98 \mathrm{~g} . \mathrm{cm} .^{-3}
$$

was found for $\alpha=\mathrm{USi}_{2}$.
If the origin is chosen in a uranium atom, the two silicon atoms must be at $\pm\left(\frac{1}{3}, \frac{2}{3}, z\right)$ with $z \approx \frac{1}{2}$. It is possible that the parameter z is slightly different from the value $0 \cdot 50$. Because of the small relative scattering
power of silicon it is not feasible to determine the value with accuracy, and the value $z=\frac{1}{2}$ will be adopted. Accordingly we have the following structure:

Space group: $C 6 / \mathrm{mmm}-D_{6 h}^{1}$.
1 U in $(0,0,0)$;
2 Si in $\pm\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}\right)$.
Thus $\beta-\mathrm{USi}_{2}$ is isostructural with AlB_{2} and TiB_{2}.*
The calculated intensities are given in the last column of Table 4.

Table 4. Spectrometer data for $\beta-\mathrm{USi}_{2}$

$\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$	$\sin ^{2} \theta$		Intensity	
	Obs.	Calc.	Obs.	Calc.
001	0.0364	0.0360	15	$35 \cdot 7$
100	0.0536	0.0533	57	88
101	0.0899	0.0893	150	145
002	$0 \cdot 1440$	$0 \cdot 1440$	7	15.4
110	$0 \cdot 1596$	$0 \cdot 1599$	35	36.2
111 \}	0.1963	0.1959	47	${ }^{21} \cdot 6$
102	$0 \cdot 1963$	0.1973)	47	28.9
200	$0 \cdot 2132$	$0 \cdot 2132$	8	$12 \cdot 4$
201	$0 \cdot 2485$	0.2493	32	31.9
112	$0 \cdot 3038$	$0 \cdot 3039$	30	27.5
003		$0 \cdot 3240$	<4	$1 \cdot 6$
202	0.3572	$0 \cdot 3572$	12	$10 \cdot 7$
210	0.3748	0.3731		$\{10 \cdot 0$
103)		0.3773)	17	$\{16.2$
211	0•4080	$0 \cdot 4091$	18	28.7

Each uranium atom is bonded to twelve silicon atoms with $\mathrm{U}-\mathrm{Si}=3.01 \mathrm{~A}$. Each silicon atom is bonded to six uranium atoms and to three silicon atoms with

$$
\mathrm{Si}-\mathrm{Si}=2 \cdot 22 \mathrm{~A}
$$

The silicon atoms form 'graphite layers' normal to the sixfold axis.

With the parameter $z=0.40$ instead of 0.50 the silicon layer would be puckered with $\mathrm{Si}-\mathrm{Si}=2 \cdot 36 \mathrm{~A}$. A uranium atom would have six silicon neighbors at 2.75 A . and six at $3 \cdot 30 \mathrm{~A}$.

The crystal structure of USi

The X-ray diffraction data for the phase USi are shown in Table 5. It proved possible after many trials to interpret the observed sine squares in accordance with an orthorhombic unit cell of dimensions

$$
\begin{gathered}
a_{1}=5.65 \pm 0.01 \mathrm{kX} ., \quad a_{2}=7.65 \pm 0.01 \mathrm{kX} \\
a_{3}=3.90 \pm 0.01 \mathrm{kX}
\end{gathered}
$$

The suggested formula USi is compatible with the observations if one assumes four stoichiometric molecules per unit cell. This gives a calculated density of $\rho=10 \cdot 40$ g.cm. ${ }^{-3}$.

The translation lattice is primitive. Reflections $\mathrm{H}_{1} 0 \mathrm{H}_{3}$ are absent if $\mathrm{H}_{1}+\mathrm{H}_{3}$ is odd, reflections $0 \mathrm{H}_{2} \mathrm{H}_{3}$ if H_{2} is odd. Accordingly the space group is either Pbnm or one of its subgroups. The observed intensities are

[^0]satisfactorily accounted for by means of the space group Pbnm if the atomic positions are chosen as follows:
4 U in $\pm\left(x_{1}, y_{1}, \frac{1}{4}\right),\left(\frac{1}{2}-x_{1}, y_{1}+\frac{1}{2}, \frac{1}{4}\right)$, with
$$
x_{1}=0.125 \pm 0.010, \quad y_{1}=0.180 \pm 0.010
$$

4 Si in $\pm\left(x_{2}, y_{2}, \frac{1}{4}\right),\left(\frac{1}{2}-x_{2}, y_{2}+\frac{1}{4}, \frac{1}{4}\right)$, with

$$
x_{2}=0.611, \quad y_{2}=0.028
$$

A search through the literature showed that the structure deduced for USi corresponds to a known type, namely, that of FeB.
The last column of Table 5 gives the calculated intensities.

Table 5. Spectrometer data for USi

	$\sin ^{2} \theta$		Intensity	
$\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$	Obs.	Calc.	Obs.	Calc.
110	0.0290	0.0289	58	38
020	0.0408	$0 \cdot 0408$	98	84
101)		$\{0.0580$		$\{167$
120	0.0589	10.0595	175	$\{112$
111	0.0681	0.0682	236	265
200	-	0.0748		0
021	0.0802	0.0801	177	174
210	0.0855	$0 \cdot 0850$	251	214
121	$0 \cdot 0986$	$0 \cdot 0988$	98	111
130	0-1098	$0 \cdot 1105$	106	102
220	-	$0 \cdot 1156$		0
211	$0 \cdot 1238$	$0 \cdot 1243$	55	82
131	-	$0 \cdot 1498$	-	11
221	-	$0 \cdot 1549$	-	0
002	0.1558	$0 \cdot 1572$	108	63
040	-	$0 \cdot 1632$		0
230	-	$0 \cdot 1666$	-	4
310		$0 \cdot 1785$		5
140	$0 \cdot 1806$	$0 \cdot 1819$	69	44
112	-	$0 \cdot 1861$		8
022	$0 \cdot 1963$	$0 \cdot 1980$	59	21
041	$0 \cdot 2005$	$0 \cdot 2025$	77	59
231	0.2047	$0 \cdot 2059$	200	107

The surroundings of a uranium atom and of a silicon atom are:

$$
\begin{aligned}
\mathrm{U}-2 \mathrm{Si} & =2.93 \mathrm{~A} . & \mathrm{Si}-2 \mathrm{Si} & =2.36 \mathrm{~A} . \\
-2 \mathrm{Si} & =2.96 & -2 \mathrm{U} & =2.93 \\
-1 \mathrm{Si} & =2.97 & -2 \mathrm{U} & =2.96 \\
-1 \mathrm{Si} & =2.98 & -1 \mathrm{U} & =2.97 \\
-1 \mathrm{Si} & =3.13 & -1 \mathrm{U} & =2.98 \\
-4 \mathrm{U} & =3.60 & -1 \mathrm{U} & =3.13 \\
-2 \mathrm{U} & =3.66 & &
\end{aligned}
$$

The silicon atoms are bonded together to form endless zigzag chains along the a_{3} axis. The $\mathrm{Si}-\mathrm{Si}$ distance in the chain is 2.36 A :, and the bond angle is 112°.

The crystal structure of $\mathrm{U}_{3} \mathrm{Si}_{2}$

Table 6 gives some of the diffraction data for the phase tentatively identified as $\mathrm{U}_{5} \mathrm{Si}_{3}$. The data can be interpreted on the basis of a primitive tetragonal translation group. Observations in the back-reflection region gave the following values for the dimensions of the unit cell:

$$
a_{1}=7.3151 \pm 0.0004 \mathrm{kX} ., \quad a_{3}=3.8925 \pm 0.0005 \mathrm{kX}
$$

The volume of the unit cell is thus $208(\mathrm{kX} .)^{3}$.

The volume requirement of a uranium atom in the structure of the element is $20 \cdot 6 \mathrm{~A} .^{3}$, while the corresponding value for silicon is $19.8 \mathrm{~A}^{3}$ In $\alpha-\mathrm{USi}_{2}$ the volume per atom is $18.0 \mathrm{~A} .^{3}$, in $\beta-\mathrm{USi}_{2} 17.4 \mathrm{~A} .^{3}$ and in USi $21 \cdot 1 \mathrm{~A} .^{3}$. If it is asumed that the volume per atom also in the phase under consideration lies in the range $17-21$ A. ${ }^{3}$, then the unit cell given above must contain ten, eleven or twelve uranium plus silicon atoms. The suggested formula $\mathrm{U}_{5} \mathrm{Si}_{3}$ must thus be rejected.

Table 6. Spectrometer data for $\mathrm{U}_{3} \mathrm{Si}_{2}$

	$\sin ^{2} \theta$		Intensity	
$H_{1} H_{2} H_{3}$	Obs.	Calc.	Obs.	Calc.
110	0.0231	0.0222	6	$5 \cdot 9$
001	0.0398	0.0393	8	$3 \cdot 7$
200	-	0.0444	-	$0 \cdot 4$
210	0.0569	0.0555	29	$26 \cdot 4$
111	0.0627	0.0615	24	22.7
201	0.0843	0.0837	74	$57 \cdot 0$
220	0.0892	0.0888	19	$15 \cdot 9$
211	0.0960	0.0948	45	$41 \cdot 5$
310	$0 \cdot 1114$	$0 \cdot 1110$	34	$25 \cdot 0$
221	-	$0 \cdot 1281$	-	$0 \cdot 2$
320	-	$0 \cdot 1443$	-	$1 \cdot 8$
311	-	$0 \cdot 1503$	-	0.7
002	$0 \cdot 1577$	$0 \cdot 1572$	10	$10 \cdot 8$
400	-	$0 \cdot 1776$	-	0.3
112	-	$0 \cdot 1794$	-	0.9
321	-	$0 \cdot 1836$	-	$0 \cdot 3$
410	$0 \cdot 1894$	$0 \cdot 1887$	17	$10 \cdot 5$
330	-	$0 \cdot 1998$	-	$1 \cdot 2$
202	-	0.2016	-	$0 \cdot 1$
212	0.2118	$0 \cdot 2127$	13	$8 \cdot 0$
401	$0 \cdot 2139$	$0 \cdot 2169$	8	$3 \cdot 2$
420	$0 \cdot 2226$	$0 \cdot 2220$	10	$3 \cdot 4$
411	$0 \cdot 2284$	$0 \cdot 2280$	21	$13 \cdot 8$
331	$0 \cdot 2391$	$0 \cdot 2391$	23	$17 \cdot 1$
222	$0 \cdot 2455$	$0 \cdot 2460$	9	$7 \cdot 1$

Reflections $00 H_{3}$ are present in all orders, but reflections $H_{1} 0 H_{3}$ are absent if H_{1} is odd. This suggests the space group $P 4 / m b m-D_{4 / \hbar}^{5}$ or one of its subgroups.

The fact that some reflections are absent shows the presence of an even number of uranium atoms per unit cell. Since the correct composition of the phase cannot differ greatly from the suggested ratio $\mathrm{U}: \mathrm{Si}=5: 3$, the arguments given above led to $\mathrm{U}_{3} \mathrm{Si}_{2}$ as the most probable formula and to two of these stoichiometric molecules per unit cell. The calculated density is $\rho=12 \cdot 20 \mathrm{~g} . \mathrm{cm} .^{-3}$. Conclusive proof of the correctness of the formula $\mathrm{U}_{3} \mathrm{Si}_{2}$ is provided by the detailed structure analysis which led to the following structure:

Space group: $P 4 / \mathrm{mbm}$.
Atomic positions:
$2 \mathrm{U}_{\mathrm{I}}$ in $(0,0,0),\left(\frac{1}{2}, \frac{1}{2}, 0\right)$;
$4 \mathrm{U}_{\mathrm{II}}$ in $\pm\left(u, u+\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}-u, u, \frac{1}{2}\right)$ with

$$
u=0 \cdot 181 \pm 0 \cdot 006
$$

4 Si in $\pm\left(v, v+\frac{1}{2}, 0\right),\left(\frac{1}{2}-v, v, 0\right)$ with $v=0.389$.
The calculated intensities are listed in the last column of Table 6, and Fig. 1 shows the structure viewed along the fourfold axis.

The atomic surroundings are:

$$
\begin{array}{rlrl}
\mathrm{U}_{\mathrm{I}}-4 \mathrm{Si} & =2 \cdot 96 \mathrm{~A} . & \mathrm{Si}-1 \mathrm{Si}=2.30 \mathrm{~A} . \\
-8 \mathrm{U}_{\mathrm{II}} & =3 \cdot 32 & -2 \mathrm{U}_{\mathrm{II}}=2.90 \\
\mathrm{U}_{\mathrm{II}}-2 \mathrm{Si} & =2 \cdot 90 & -4 \mathrm{U}_{\mathrm{II}}=2.93 \\
-4 \mathrm{Si} & =2.93 & -2 \mathrm{U}_{\mathrm{I}}=2.96 \\
-4 \mathrm{U}_{\mathrm{I}} & =3.32 & &
\end{array}
$$

The silicon atoms are bonded together to form pairs normal to the fourfold axis as shown in Fig. 1.

Fig. 1. The $\mathrm{U}_{3} \mathrm{Si}_{2}$ structure viewed along the fourfold axis. Small open circles: U_{1} atoms. Small filled circles: U_{II} atoms. Large open circles: Si atoms.

The crystal structure of $\mathrm{U}_{3} \mathrm{Si}$

Table 7 gives some of the diffraction data for the phase which was believed to be $\mathrm{U}_{10} \mathrm{Si}_{3}$. The observed sine squares correspond to a body-centered tetragonal translation lattice. The unit-cell dimensions as determined from observations at large scattering angles are:

$$
a_{1}=6.017 \pm 0.002 \mathrm{kX.}, \quad a_{3}=8 \cdot 679 \pm 0.003 \mathrm{kX}
$$

Reflections $H_{1} 0 H_{3}$ are absent unless both H_{1} and H_{3} are even integers. Thus the space group $I 4 / \mathrm{mcm}$ or one of its subgroups is indicated.

Table 7. Spectrometer data for $\mathrm{U}_{3} \mathrm{Si}$

$\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$	$\sin ^{2} \theta$		Intensity	
	Obs.	Calc.	Obs.	Calc.
002	0.0317	0.0316	24	$27 \cdot 0$
110	0.0332	0.0328	39	$50 \cdot 2$
112	0.0648	0.0644	54	$47 \cdot 6$
200	$0 \cdot 0666$	0.0656	15	$18 \cdot 6$
211	$0 \cdot 0904$	$0 \cdot 0899$	42	17•1
202	0.0978	$0 \cdot 0972$	327	317
004	$0 \cdot 1267$	$0 \cdot 1264$	51	57.2
220	$0 \cdot 1314$	$0 \cdot 1312$	78	99.5
213	$0 \cdot 1527$	$0 \cdot 1531$	18	8.0
114	$0 \cdot 1590$	$0 \cdot 1592$	21	11.8
222	$0 \cdot 1616$	$0 \cdot 1628$	12	$9 \cdot 4$
310	$0 \cdot 1635$	$0 \cdot 1640$	15	15.5
204	$0 \cdot 1908$	0.1920	9	8.2
312	0.1949	$0 \cdot 1956$	30	14.7
321	$0 \cdot 2204$	$0 \cdot 2211$	15	$4 \cdot 0$
224	$0 \cdot 2561$	0.2576	78	68.5
400	0.2614	$0 \cdot 2624$	36	$30 \cdot 9$

The suggested formula $\mathrm{U}_{10} \mathrm{Si}_{3}$ is not compatible with the observations. Because the unit cell has a volume of
$314(\mathrm{kX} .)^{3}$ and because the extinctions require the number of atoms per unit cell to be a multiple of four, one is led to the formula $\mathrm{U}_{3} \mathrm{Si}$ with four stoichiometric molecules per unit cell. The calculated density is $\rho=15.58 \mathrm{~g} . \mathrm{cm} .^{-3}$.

Intensity calculations led to the following structure:
Space group: $I 4 / m c m-D_{4 h}^{18}$.
Atomic positions: $(0,0,0),\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)+$;
$4 \mathrm{U}_{\mathrm{I}}$ in $\pm\left(0,0, \frac{1}{4}\right)$;
$8 \mathrm{U}_{\mathrm{II}}$ in $\pm\left(u, u+\frac{1}{2}, 0\right),\left(u+\frac{1}{2}, \bar{u}, 0\right)$ with

$$
u=0.231 \pm 0.005
$$

4 Si in $\left(0, \frac{1}{2}, \frac{1}{4}\right),{ }^{\circ}\left(\frac{1}{2}, 0, \frac{1}{4}\right)$.
Fig. 2 views the structure along the fourfold axis. The calculated intensities are in the last column of Table 7.

Fig. 2. The $\mathrm{U}_{3} \mathrm{Si}$ structure viewed along the fourfold axis. Large circles: Si atoms. Small filled circles: U_{I} atoms. Small open circles: U_{II} atoms.

The atomic surroundings are:

$$
\begin{array}{rlrl}
\mathrm{U}_{\mathrm{I}}-4 \mathrm{Si} & =3.01 \mathrm{~A} . & \mathrm{Si}-4 \mathrm{U}_{\mathrm{I}}=3.01 \mathrm{~A} . \\
-8 \mathrm{U}_{\mathrm{II}} & =3.04 & -4 \mathrm{U}_{\mathrm{II}}=2.92 \\
\mathrm{U}_{\mathrm{II}}-2 \mathrm{Si} & =2.92 & -4 \mathrm{U}_{\mathrm{II}}=3 \cdot 17 \\
-2 \mathrm{Si} & =3 \cdot 17 & & \\
-4 \mathrm{U}_{\mathrm{I}} & =3.04 & & \\
-4 \mathrm{U}_{\mathrm{II}} & =3.02 & &
\end{array}
$$

In $\mathrm{U}_{3} \mathrm{Si}$ there is, in contrast to the other silicides, no bond between silicon atoms.

The structure is pseudo-cubic. If the $\mathrm{U}_{\text {II }}$ atoms are shifted so that $u=\frac{1}{4}$ and simultaneously the axial ratio $a_{3}: a_{1}$ is reduced from $1 \cdot 442$ to $\sqrt{ } 2, \mathrm{U}_{3} \mathrm{Si}$ would have the $\mathrm{Cu}_{3} \mathrm{Au}$ type of structure.

Discussion of the structures

The scattering power of uranium is about eight times that of silicon. Only powder diffraction patterns being available, it was accordingly not possible to determine the positions of the silicon atoms with accuracy by means of intensity data. The silicon parameters are therefore given without specifying the probable limits of error. In selecting the final parameter values for the silicon atoms within the rather wide ranges compatible with the intensity data it was necessary to make some
use of considerations based upon interatomic distances. It is believed that the silicon positions have been located in this manner with greater reliability than would have been possible from intensity considerations alone.

The interatomic distances and coordination numbers observed in the various uranium silicides are shown in Table 8. In all structures except $\mathrm{U}_{3} \mathrm{Si}$ covalent bonds between silicon atoms occur. Bonds between uranium atoms are definitely present in $\mathrm{U}_{3} \mathrm{Si}$ and $\mathrm{U}_{3} \mathrm{Si}_{2}$. It is questionable whether the U-U separation of 3.62 A . observed in USi may be regarded as indicating the presence of bonds between these atoms.

Table 8. Interatomic distances and coordination numbers

$\alpha-\mathrm{USi}_{2}$	$\mathrm{U}-12 \mathrm{Si}=3.03 \mathrm{~A}$.	$\begin{aligned} & \mathrm{Si}-6 \mathrm{U}=3.03 \mathrm{~A} . \\ & \mathrm{Si}-3 \mathrm{Si}=2.29 \end{aligned}$
$\beta-\mathrm{USi}_{2}$	$\mathrm{U}-12 \mathrm{Si}=3.01 \mathrm{~A}$.	$\begin{aligned} & \mathrm{Si}-6 \mathrm{U}=3 \cdot 01 \mathrm{~A} . \\ & \mathrm{Si}-3 \mathrm{Si}=2 \cdot 22 \end{aligned}$
USi	$\begin{array}{ll} \mathrm{U}-7 \mathrm{Si} & =2.98 \mathrm{~A} . \\ \mathrm{U}-\mathrm{U} & =3.62 \end{array}$	$\begin{aligned} & \mathrm{Si}-7 \mathrm{U}=2 \cdot 98 \mathrm{~A} . \\ & \mathrm{Si}-2 \mathrm{Si}=2 \cdot 36 \end{aligned}$
$\mathrm{U}_{3} \mathrm{Si}_{2}$	$\begin{aligned} & \mathrm{U}_{\mathrm{T}}-4 \mathrm{Si}=2.96 \mathrm{~A} . \\ & \mathrm{U}_{\mathrm{T}}-8 \mathrm{U}=3.32 \\ & \mathrm{U}_{\mathrm{U}}-6 \mathrm{Si}=2.92 \\ & \mathrm{U}_{\mathrm{II}}-4 \mathrm{U}=3.32 \end{aligned}$	$\mathrm{Si}-2 \mathrm{U}=2.96 \mathrm{~A}$. Si-6 U $=2.92$ $\mathrm{Si}-\mathbf{1 ~ S i}=\mathbf{2 \cdot 3 0}$
$\mathrm{U}_{8} \mathrm{Si}$		$\mathrm{Si}-4 \mathrm{U}=2.92 \mathrm{~A}$. Si-4 U $=3.01$ Si-4 U $=3 \cdot 17$

The single-bond radius of silicon being $1 \cdot 173 \mathrm{~A}$. the observed Si-Si distances of about $2 \cdot 3 \mathrm{~A}$. show that the $\mathrm{Si}-\mathrm{Si}$ bonds are essentially single bonds. It is reasonable to suppose, however, that there may be a slight admixture of double-bond character to the $\mathrm{Si}-\mathrm{Si}$ bonds in the two forms of USi_{2}. The binding between silicon atoms results in the formation of Si_{2} groups in $\mathrm{U}_{3} \mathrm{Si}_{2}$, of zigzag chains in USi, of 'graphite' layers in $\beta-\mathrm{USi}_{2}$, and of a three-dimensional network of silicon atoms in $\alpha-\mathrm{USi}_{2}$. This network is of interest because it suggests the possible existence of a third crystalline form of carbon. This tetragonal carbon structure would have unit-cell dimensions $a_{1}=2 \cdot 455 \mathrm{~A}$. and $a_{3}=8.50 \mathrm{~A}$., with the eight carbon atoms in the same positions as the silicon atoms in $\alpha-\mathrm{USi}_{2}$, and with a density of

$$
\rho=3 \cdot 10 \mathrm{~g} . \mathrm{cm} .^{-3} .
$$

The ideas as regards the nature of the metallic bonds presented by Pauling (1947) in a recent article will be used as a basis for a further discussion of the structures of the uranium silicides.

The radius of uranium for coordination number twelve as obtained from the structure of metallic uranium is 1.516 A . Assuming $5 \cdot 78$ valence electrons for uranium, Pauling arrives at a value of 1.421 A . for the single-bond radius. The observed U-Si distances are not compatible with the uranium radius 1.516 A . found in uranium metal. If Pauling's assumption of 5.78 (or 6)
valence electrons in uranium metal is correct, then a much smaller number of valence electrons must be associated with uranium in the uranium silicides. The observed interatomic distances lead to the following values for the valence electrons associated with uranium:

		v for U
$\alpha-\mathrm{USi}_{2}$		$2 \cdot 2$
$\beta-\mathrm{USi}_{2}$		$2 \cdot 4$
USi^{2}		$1 \cdot 9$
$\mathrm{U}_{3} \mathrm{Si}_{2}$	U_{T}	$2 \cdot 2$
$\mathrm{U}_{3} \mathrm{Si}$	U_{UI}	$2 \cdot 3$
	U_{T}	$4 \cdot 5$
	U_{II}	$4 \cdot 6$

A similar calculation of the number of valence electrons associated with silicon is not trustworthy since the short $\mathrm{Si}-\mathrm{Si}$ distances are not known with accuracy. If it is assumed, however, that all Si -Si bonds are single bonds, the following results are obtained:

	v for Si
$\alpha-\mathrm{USi}_{2}$	$4 \cdot 1$
$\beta-\mathrm{USi}_{2}$	$4 \cdot 2$
USi^{2}	$3 \cdot 6$
$\mathrm{U}_{3} \mathrm{Si}_{2}$	$3 \cdot 2$
$\mathrm{U}_{3} \mathrm{Si}^{2}$	$2 \cdot 4$

As shown by these results, it is possible to obtain a satisfactory explanation of the observed interatomic distances in $\alpha-\mathrm{USi}_{2}, \beta-\mathrm{USi}_{2}, \mathrm{USi}$ and $\mathrm{U}_{3} \mathrm{Si}_{2}$ by assuming 2.3 valence electrons for uranium and the normal number of four valence electrons for silicon. The observed and the calculated interatomic distances are shown in Table 9.

Table 9. Observed and calculated interatomic distances

Compound	Interatomic distance	Obs. A.	CaIc. A.
$\alpha-\mathrm{USi}_{2}$	U-Si	$3 \cdot 03$	3.04
	$\mathrm{Si}-\mathrm{Si}$	$2 \cdot 29$	$2 \cdot 35$
$\beta-\mathrm{USi}_{2}$	$\mathrm{U}-\mathrm{Si}$	3.01	$3 \cdot 04$
	$\mathrm{Si}-\mathrm{Si}$	$2 \cdot 22$	$2 \cdot 35$
USi	U-Si	2.98	$2 \cdot 98$
	U-U	$3 \cdot 62$	$3 \cdot 29$
	Si-Si	$2 \cdot 36$	$2 \cdot 35$
$\mathrm{U}_{3} \mathrm{Si}_{2}$	$\mathrm{U}_{-1-S i}$	2.96	$2 \cdot 95$
	$\mathrm{U}_{\mathrm{IL}}-\mathrm{Si}$	$2 \cdot 92$	$2 \cdot 91$
	U-U	$3 \cdot 32$	$3 \cdot 25$
	Si -Si	$2 \cdot 30$	$2 \cdot 35$

In the $\mathrm{U}_{3} \mathrm{Si}$ structure with $v=5 \cdot 78$ for uranium and $v=4$ for silicon one calculates $\mathrm{U}-\mathrm{U}=3.03 \mathrm{~A}$. and $\mathrm{U}-\mathrm{Si}=2.83 \mathrm{~A}$., as compared with the observed values of $\mathrm{U}-\mathrm{U}=3.03 \mathrm{~A}$. and $\mathrm{U}-\mathrm{Si}=2 \cdot 92,3.01$ and 3.17 A .

With $2 \cdot 3$ valence electrons the metallic radius of uranium for coordination number twelve becomes 1.636 A . instead of 1.516 A . as observed in uranium metal. The larger radius for uranium appears to be the normal one, since it is encountered in most metallictype uranium compounds. Pauling \& Ewing (1948) have recently pointed out that it is necessary to assume the existence of two kinds of uranium atoms in the UH_{3}
structure (1947), one kind corresponding to $5 \cdot 78$ and the other to $2 \cdot 3$ valence electrons.

The writer wishes to express his sincere thanks to Miss Anne Plettinger who took all the diffraction patterns and to Drs J. R. Clark, E. F. Westrum, B. M. Abraham and I. Sheft who provided the silicide samples.

References

Brauer, G. \& Mitius, A. (1942). Z. anorg. Chem. 249, 325.

Pauling, L. (1947). J. Amer. Chem. Soc. 69, 542.
Pauling, L. \& Ewing, F. J. (1948). J. Amer. Chem. Soc. 70, 1660.
Rundle, R. E. (1947). J. Amer. Chem. Soc. 69, 1719.

Acta Cryst. (1949). 2, 99

Limits of Accuracy in the Determination of Lattice Parameters and Stresses by the Debye-Scherrer Method*

By Hans Erstein and Stanley Siegel
Armour Research Foundation of Illinois Institute of Technology, Chicago, Ill., U.S.A.

(Received 22 July 1948 and in revised form 22 November 1948).

Abstract

The chief factor in limiting the presently attained accuracy of lattice-parameter determinations and stress evaluations by X-rays is the spectral width of the primary characteristic radiation. At large angles, where the line is most sensitive to changes of lattice dimension, the spectral width predominates over the width due to the geometry of the usual collimating systems. The accuracy of parameter determinations is limited essentially by the accuracy with which the center of such a line can be measured. For a diffraction line with a smooth intensity distribution, recorded on film, the error of measurement caused by the irregular fluctuations of density arising from the film grain is determined experimentelly. It is shown that the present accuracy of stress measurements by X-rays has, in favorable cases, reached the limit given by the spectral width of the characteristic radiation.

1. Theoretical considerations

A. Introduction

In past years, the accuracy of lattice-parameter measurements from Debye-Scherrer diagrams has been increased by improvements in technique and calculation methods. The best reported data (Bradley \& Jay, 1932; Jette \& Foote, 1935) give a relative error of latticeparameter determination

$$
|\delta d / d| \approx 2 \times 10^{-5}
$$

Yet, this accuracy is still insufficient for many purposes. It is, therefore, desirable to inquire into the causes which have limited the attainment of higher accuracies.
One source of error is due to the physical nature of the sample; specifically, lattice distortions and small grain size. However, this cause can be removed by adequate preparation of the sample and will not be further discussed; and, for the following discussion, it will be assumed that the sample consists of perfect and identical crystals of sufficiently large size.

[^1]A large number of papers have treated the corrections to be applied to the measured line position in order to take into account the absorption by the sample, refractive index, film shrinkage, etc. It will be assumed that all these corrections can be calculated exactly, so that the only remaining source of error is the uncertainty of measurement of the center of a given diffraction line. It is shown later that these assumptions are justified; i.e. that the actual accuracy is as high as can be expected if only the last-mentioned source of error is taken into account.

B. Line width

The factor which limits the accuracy with which the center of a diffraction line can be located is its width. It is, therefore, necessary to investigate the causes of line width.

The literature contains a number of extensive discussions of the geometrical line width (Lihl, 1932, 1934; Halla \& Mark, 1937, p. 159), i.e. that width which is calculated from the geometry of the apparatus and which assumes that the X-ray beam is monochromatic. The width depends on such factors as collimator size, the distance between collimator and specimen, the distance between specimen and film, the thickness of the

[^0]: * According to unpublished results of the writer TiB_{2} has the AlB_{2} structure with

 $$
 a_{1}=3.024 \pm 0.001 \mathrm{kX} ., \quad a_{3}=3.221 \pm 0.001 \mathrm{kX}
 $$

[^1]: * Work supported by the National Advisory Committee for Aeronautics, Washington, D.C. This paper is based upon NACA Technical Note No. 1375 (October 1947).

